CEMP TRAINING SESSION 15-17 JULY 2013 RADIOACTIVITY & RADIATION CHARACTERISTICS

Instructor: Gary M. Sandquist, PhD, CHP 2013 Training Session

Occupational Dose Equivalent Limits

General Public 100 mrem/yr **Any Occupational Worker** (unmonitored) 100 mrem/yr **Radiation Worker (monitored)** 5,000 mrem/yr = 5 rem/yr

Man-Made Sources

Medical radiation ~ 48% Nuclear weapon tests < 0.1%</p> Consumer products ~ 2% All energy production & research < 0.1% or < 0.5 mrem Industrial uses < 0.1%</p> Fukushima: Dose ~ 1 ft elevation

Medical Radiation

- **X-rays medical (CT's, etc.) & dental**
- Radioactive material for diagnosis ¹³¹I, ⁹⁹Tc, ³²P, ³H, ¹⁴C
- Radioactive material for therapy ⁶⁰Co, ¹³⁷Cs, ²²⁶Ra, neutrons
- Annual dose ~298 mrem ~48% total

EPA annual US (LNT) risk from cancer

1.16 E-3 cancer-inductions/person-rem 5.8 E-4 cancer-deaths/person-rem US population 330 million in 2006 and medical = 0.3 rem

= 115,000 induced cancers from medical = 57,000 cancer deaths from medical Medical radiation increased since 2006 so cancer risks greater

Industrial nuclear < 0.1% total 620 mrem radiation exposure Industrial radiation including all nuclear related activities = 230 induced cancers = 120 cancer deaths

ALARA

As Low As Reasonably Achievable (called ALARA by regulators)

Radiation protection program manage exposures (individual & collective to workforce & public) as low as social, technical, economic, practical, public policy permit

ALARA not dose limit but a process "maintain dose levels" As Low As Reasonably Achievable

Radium Effects Confirmed


1925

- Suspicions develop around watch dial painters' jaw lesions
- Dentists diagnose lesions as jaw necrosis due to radium deposits in jaw bone
- Doctor notes bone changes and anemia in dial painters

What is Radiation?

Radiation: energy in motion

<u>Radioactivity</u>: spontaneous emission of radiation from nucleus of an unstable atom

Isotope: atoms with same number of protons, but different number of neutrons

<u>Radioisotope</u>: unstable isotope of an element that decays or disintegrates spontaneously, emitting radiation.

About 5,000 natural and artificial radioisotopes identified

Types of Radiation

•Non-Ionizing Radiation: Radiation that does not have sufficient energy to dislodge orbital electrons.

Examples of non-ionizing radiation: microwaves, ultraviolet light, lasers, radio waves, infrared light, and radar.

Ionizing Radiation: Radiation that has sufficient energy to dislodge orbital electrons.

Examples of ionizing radiation: alpha particles, beta particles, neutrons, gamma rays, and x-rays.

Terrestrial radiation emitted from *Primordial radio nuclides* – Radio nuclides left over when earth was created.

Common radionuclides deposited during formation of earth:

-Radioactive Potassium (K-40) found in bananas, in human body, plant fertilizer and where potassium exists.

-Radioactive Rubidium (Rb-87) is found in brazil nuts among other things.

-Radioactive Carbon (C-14) produced in upper atmosphere from cosmic radiation

Terrestrial Radiation

- Greatest contributor is ²²⁶Ra (Radium) with significant levels also from ²³⁸U, ²³²Th, and ⁴⁰K.
 - Igneous rock contains highest concentration followed by sedimentary, sandstone and limestone.
 - Fly ash from coal burning plants contains more radiation than that of nuclear or oil-fired plants.

Compare Backgrounds

Sea level - 30 mrem/year

from cosmic radiation

10,000 ft. altitude - 140 mrem/year

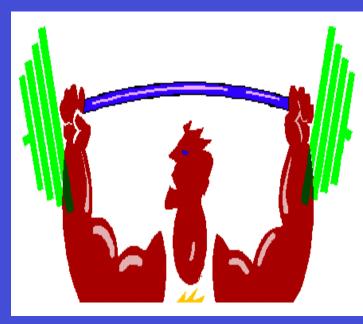
from cosmic radiation

30,000 ft. altitude - 10 mrem/hr

Aircraft flight from cosmic radiation

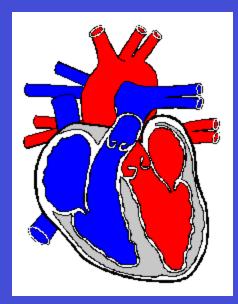
Consumer Products and Radioactive Material

Many sources of radiation in consumer products Smoke detectors agricultural products - fertilizer Iong lasting light bulbs building materials (sheet rock) static eliminators in manufacturing Iuminous dials of watches clocks and compasses • etc.


- Radiation labeled on door, work area & storage area
- Research laboratories work with radioactive materials
- Contamination warning for work in lab with radioactive materials
- Wear gloves, safety glasses, protective clothing, not eating or smoking

Radioactivity Units

- Rate of Disentegration or Decay "Strength"
- Curie (Ci) about 1 gram of radium
- 3.7 X 10¹⁰ disintegrations/sec


Becquerel (Bq) = 1 (dps)

1 mCi = 37 MBq

Dose Equivalent

- Scale for equating relative hazards of various types of ionization in terms of equivalent risk
- Damage in tissue measured in <u>rem</u>
 - (Roentgen Equivalent Man)
- Q:risk of biological injury
- rem = Q * rad
- Sievert (Sv)
- 1 Sv = 100 rem

What do we really need to know?

1 R ≈ 1 rad = 1 rem For gammas & betas
1 rad ≠ 1 rem For alphas, neutrons & protons 1 rem = 1 rad * Q

Annual Radiation Exposure Limits

Occupationally Exposed Worker:

	rem	mrem
Whole body	5	5000
Eye	15	15,000
Shallow	50	50,000
Minor	0.5	500
Pregnant Worker	0.5*	500* *9 months_

General Public: 100 mrem/year or 2mrem/hour

Ensuring Compliance to Radiation Exposure Limits

- Use established activity limit for each isotope
- Compare with similar situations
- Estimate with meter
- Calculate
 - Time, Distance, Shielding, Type, Energy, Geometry
- Measure
 - TLD Chip, Luxel
 - Bioassay

Who should wear radiation dosimeters or badges?

- Those "likely" to exceed 10% of their annual limit are required
- Those who would like a badge
- Minors & Declared Pregnant Workers*

- Industrial use of nuclear materials < 0.1% radiation exposure to public and workers.
- Environmental Protection Agency asserts annual US radiation risk from cancer
 - 1.16 E-3 cancer-inductions/person-rem
 - 5.8 E-4 cancer-deaths/person-rem
- US population is 330 million so for 2006
 - Annual cancer induction from medical
 - = 115,000 induced cancers
 - = 57,000 cancer deaths from medical
 - All industrial radiation including all nuclear related activities
 - = 230 induced cancers
 - = 120 cancer deaths

Perspective of Risk Estimated Loss of Life Expectancy during lifetime

Health Risks

20 cigarettes/day	6 years	
15% overweight	2 years	
Consuming alcohol	1 year	
All Accidents	1 year	
Motor vehicle	207 days	
Home accident	74 days	
Drowning	24 days	
Natural hazards	7 days	
Medical radiation	15 days	
620 mrem/y for 47 y	v 31 days	
(US Background dose)		
1 rem/y for 47 y	50 days	

Industrial Accidents		
All industries	60 days	
Agriculture	320 days	
Construction	227 days	
Mining	167 days	
Transportation 160 days		
Government	60 days	
Manufacturing	40 days	
Trade	27 days	
Services	27 days	
Nuclear Plant	27 days	

Declared Pregnant Worker (Embryo / Fetus)

Policy: Female radiation worker encouraged to voluntarily notify supervisor (written) if pregnant

Employer must provide agreeable work with limited (~no rad) exposure & no loss of pay or promotional opportunity

 Further occupational rad exposure unlikely during pregnancy

External & Internal Radiation Dose Reduction

Use shielding if possible
 Minimize time in radiation field
 Maximize distance to rad source
 Dose ~ Source x time / (distance)²

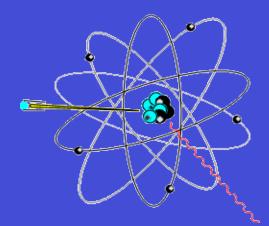
Radiological Control Responsibilities

Provide technical & programmatic control over radiation & radioactive materials

- Provide Health Physics (HP) personnel & monitoring equipment
- Issue Radiation Work Permits (RWPs)
- Maintain dosimetry program
- Maintain training program

Radiological Control Responsibilities

Provide technical & programmatic control over radiation & radioactive materials


- Provide Health Physics (HP) personnel & monitoring equipment
- Issue Radiation Work Permits (RWPs)
- Maintain dosimetry program
- Maintain training program

Radiological Areas

Radiological Buffer Area Radiation Area High Radiation Area Very High Radiation Area Contamination Area High Contamination Area Fixed Contamination Area Soil Contamination Area Airborne Radioactivity Area

Contamination Area

Area where surface has removable contamination > given limits **Entry Requirements: Radiological Training II** Worker signs RWP **Requirements for work in area:** Personnel dosimeter if necessary Minimize dust generation **Respiratory protection if necessary**

Soil Contamination Area

Area where surface soil contaminated above limits

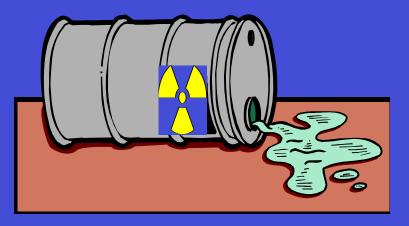
Entry Requirements: Radiological Training II Worker signs RWP

Requirements for work in area: Personnel dosimeter if necessary Minimize dust generation Minimize earth disturbance Respiratory protection if necessary

Radioactive Material Area

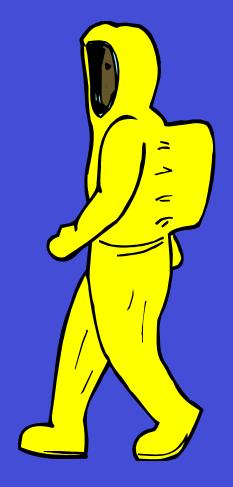
Entry requirements into Rad Materials Area if whole body dose rate > 5 mrem/hour or contamination > specified limits

Same for entry into Radiation Area or Contamination Area


Depends on radiological hazard present

Control of Radioactive Spills

- Stop or secure spill source
- Warn others in area
- Isolate spill if possible
- Minimize exposure & contamination
- Secure unfiltered ventilation
- Requirements for exiting
 - Site specific monitoring


- Monitor per posted instructions before entry to clean area

- Notify Rad Control personnel
- Changing rad conditions.
- Actions don't create rad problems for others.
 - Be alert for activities that change rad conditions

Personnel Protective Clothing

- Protective Clothing used to enter areas with rad levels above specified limits to prevent skin contamination
- Clothing depends on work area, rad conditions, job, etc.
- Full protective clothing includes coveralls
 - cotton glove liners & gloves
 - hood
 - shoe covers & rubber overshoes

Radiation Damage

Direct Effects:

Ionization can break chemical bonds

Indirect Effects:

- Ionized water results in radicals H⁺ or HO⁻ or H₂O₂
- These radicals cause chemical damage
- Location of damage important: Cell Nucleus or Cytoplasm

Possible Effects on Cells

No damage evident

Damage repaired & cell normal

Damage not repaired & cell functions abnormally

Cell dies

Cell Sensitivity

Cells have different rad sensitivity
 Most sensitive: Cells actively dividing (e.g., stem & blood cells)
 Moderate sensitive: Less specialized cells
 Least sensitive: Specialized cells or

less actively dividing (nerve, brain, bone, muscle cells, skin)

Factors for Biological Damage

- Total dose (how much)
- Dose rate (how fast)
- Type of radiation
 - (alpha, beta, gamma, neutron)
- Area exposed
 - (total body, internal, hands, etc.)
- Cell sensitivity
- Individual person sensitivity

Risk From Exposure

No observed increase of risk at occupational exposures
 Risk factor: 4 x 10⁻⁴ latent health effects per rem (LNT model)
 Cancer formation latency time > 10 yr
 More solid tumor formation old age

US radiation setting bodies constrained

- No deliberate exposure to radiation justified unless some benefit
- All radiation exposure must be kept
 - "As Low As Reasonably Achievable" ALARA
- Radiation doses to individuals should not exceed mass maximum permissible doses - MPD's.

No evidence for harm at low levels of radiation But following assumptions made linear non threshold dose relationship LNT applies for any radiation exposure (>0) no threshold for radiation doses below which no health effects occur No biological recovery from radiation effects at any dose level

Risk of worker death from radiation only from CANCER

- No observable workers injuries for exposures at regulatory levels
- Regulatory dose limits far below threshold for observable stochastic effects