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Total Worldwide Nuclear Tests by Year (1945-98)
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US Nuclear Tests — Total by Type

TYPE us US - UK
Airburst 1 0
Airdrop 52 0
Balloon 25 0
Barge 36 0
Rocket 12 0
Surface 28 0
Tower 56 0
Total Atmospheric 210 0
Crater 9 0
Shaft 739 24
Tunnel 67 0
Total Underground 815 24
Total Underwater 5 0
TOTAL TESTS 1030 24




TOTAL MEGATONNAGES EXPENDED IN
NUCLEAR TESTS, 1945-1996

Atmosphere |Underground | Total
USA 141 38 179
Soviet Union | 247 38 285
UK 8 0.9 8.9
France 10 4 14
China 21.9 1.5 23.4
Pakistan (2 tests)
India (3 tests)
TOTAL 427.9 82.4 510.3




Fission Yield Curve

Figure 2 Fission yield curves
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EQUIVALENTS OF 1 KILOTON OF TNT

*The complete fission of 56 grams of fissionable material
produces:
Fission of 1.45x1023 nuclei
*3x10%3 atoms of fission products (two for each atom of
fissionable material).
*One minute after the explosion this mass is undergoing
decays at a rate of 102" disintegrations/sec (equivalent to
3x1019 curies).
*Energy equivalents:

*1x1072 calories

*4.2x10"° ergs

*1.15x106 kilowatt-hours



INCREACING INTENSITY
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Fallout Decay Curves

Gamma decay curves from
seven tests from Operation
Plumbbob. This slide
shows that nuclear decay

follow the same basic curve
t—1.2.



Historical Radiation Exposure
Guide Development

1929 - U.S. Advisory committee on X-Ray & Radium Protection formed (forerunner of
NCRP)

1931 - USACXRP publishes first recommendations - 0.2 R/day

1934 - ICRP recommends permissible dose of 0.2 R/day

1936 - USACXRP recommends reduction in permissible dose to 0.1 R/day
1942-1945 - Manhattan Engineering District formed

1948 - 0.3 R/wk

1950 - 0.3 rem/wk



Brief History of External Whole Body Exposure Guides for Public

Year Exposure guide Reference
1951 3.0 R/10 Weeks AEC (Buster-Jangle Operation)
1953 3.0 R/10 weeks AEC Safety Booklet-March 1953
1955 3.9 Rlyear AEC (Teapot Operation)
1957 0.5 rem/year NCRP (NBS HB-59)
1958 5.0 rem/30 years ICRP Pub No. 1
1959 0.5 rem/year NCRP (NBS HB-69)
ICRP Pub. No.2

1960 0.170 rem/year (group) FRC Report No.1

0.5 rem/year (individual)
1971 0.170 rem/year (group) NCRP Report No. 39

0.5 rem/year (individual)

0.1 rem/year student
1977 0.5 rem/year ICRP Pub No. 26
1987 Freq. Exposure 0.1 rem/year NCRP Report No. 91

Infreq Exposure 0.5 rem/year

Remedial action when freq. Exp > 0.5 rem
1991 0.1 rem/year (individual) ICRP Pub. No. 60
1993 0.1 rem/year NCRP Report No. 116
1997 0.015 rem/year (individual) USEPA/OSWER No. 9200

(cleanup criteria)




The primary contributors to Fallout
in So. Utah



CUMULATIVE EXTERNAL EXPOSURE (Roentgen, R) FOR SELECTED

UTAH COMMUNITIES
COMMUNITY Exposure (R) COMMUNITY Exposure (R)
Beaver 0.25 Milford 0.10
Bryce Canyon 0.56 Mount Carmel 0.94
Cedar City 0.64 Mount Carmel Junction 0.85
Desert Range Exp. Station 0.10 Orderville 1.60
Enterprise 0.79 Paiute Indian Reservation 0.30
Garrison 0.88 Panguitch 0.70
Glendale 1.40 Parowan 0.42
Hamilton Fort 0.80 St. George 3.70
Hilldale 0.44 Santa Clara 4.30
Hurricane 3.50 Shivwits 3.60
Kanab 1.60 Springdale 2.70
La Verkin 3.70 Virgin 1.60
Lund 0.50 Zion Lodge 1.20




FALLOUT IN SOUTHERN UTAH - WASHINGTON, IRON, KANE, AND BEAVER COUNTIES

City

St. George, UT

(Washington County)

total

Cedar City, UT
(Iron County)

total

Kanab, UT
(Kane County)

total

Orderville, UT
(Kane County)

total

Beaver, UT
(Beaver County)

total

Event Name

Annie (UK)

Simon (UK)

Harry (UK)

Tesla (Teapot)
Zucchini (Teapot)

Priscilla (Plumbbob)
Smoky (Plumbbob)
Morgan (Plumbbob)

Fox (TS)
Hammy (UK)
Apple | (Teapot)
Zucchini (Teapot)
Priscilla (Plumbbob)
Smoky (Plumbbob)

Simon (UK)
Harmry (UK)

Harmry (UK)
Tesla (Teapot)
Apple | (Teapot)
Priscilla (Plumbbob)
Smoky (Plumbbob)
Morgan (Plumbbob)

Fox (TS)
Met (Teapot)

Historical Dose
Estimate

0.35
0.01
2.50
0.10
0.04
0.03
0.66
0.01
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0.20
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Percent of
Total

0.09
0.00
0.68
0.03
0.01
0.01
0.18
0.00

0.03
0.97



ANNIE (Operation Upshot-Knothole) — March 17, 1953
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HARRY (Operation Upshot-Knothole) — May 19, 1953
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OPERATION UPSHOT-KNOTHOLE, HARRY Event, May 19, 1953.

Fallout pattern reanalyzed by Weather Service Nuclear Support
Office in 1980.
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Fig. 3. Fallout particle trajectory (path). shown by the heavy line with arrowheads, as it falls from 11,000 m ASIL
to 1,500 m ASL in 4.4 h. The numbers by the arrowhcads are the altitude of the particle and the time {H + h) it
reached that altitude. Thin lines are faliout contours {mR h™' at H + 12 h} from the WSNSO HARRY analysis.

OPERATION UPSHOT-KNOTHOLE, HARRY Event, May 19, 1953.
Fallout particle path shown by heavy line with arrowheads.



SMOKY (Operation Plumbbob) — August 31, 1957
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REGIONAL AREA SURROUNDING
THE NEVADA TEST SITE




Soil Concentration Levels for
Selected Cities



SOIL CONCENTRATION LEVELS FOR NATUALLY OCCURRING RADIONULCIDES AT THESE SPECIFIC LOCATIONS

GAMMA SPECTROSCOPY ANALYSIS

City, State Sample Number U-238 (pCilg) Th-232 (pCilg) K-40 (pCilg)
Cedar City, UT E-35 2.30 2.16 46.90
Kanab, UT E20A 3.28 293 70.60
St. George, UT EML3 2.00 1.82 56.50
Beatty, NV BE32 4.94 6.54 116.70
Las Vegas, NV SHO7 413 2.53 40.10
Kingman, AZ FMO1 3.62 6.14 102.70
Mesa, AZ NM25 3.73 449 80.80
Los Angeles, CA BA29 2.29 446 7590
Farmington, NM NM21 3.27 3.14 92.80
Albuquerque, NM AQOD1 3.16 3.02 59.30
South Rim-Grand Canyon, AZ FMO8 4.08 401 62.70
Flagstaff, AZ FV45 367 4.11 5740




SOIL CONCENTRATION LEVELS FOR CESIUM-137 AND
PLUTONIUM-239/240 IN SPECIFIC LOCATIONS

Sample Cs-137 Pu-239/240
City, State No. (nCi/m ?) (nCi/m )
Cedar City, UT E-35 67.8 1.8
Kanab, UT E20A 72 2.1
St. George, UT EML3 80.3 3
Beatty, NV BE32 36.2 59
Las VVegas, NV SHO7 40.2 2
Kingman, AZ FMO1 52.3 1.2
Mesa, AZ NM25 41.8 0.9
Los Angeles, CA BA29 40.8 0.9
Farmington, NM NM21 46.2 1.3
Albuquerque, NM AQO1 61.2 1.2
South Rim-Grand Canyon, AZ FMO8 o1.2 2.6
Flagstaff, AZ FM45 82.4 1.8




Summary of Thyroid Cohort Study Dosimetry
Based on Residence in 1965, n=3545.

WASHINGTON GRAHAM LINCOLN
CO.UTAH CO. ARIZONA CO.NEVADA  OVERALL

NUMBER OF SUBJECTS 1896 1369 280 3545

MEAN (rad) 17 1.3 5.0 9.8
MEDIAN (rad) 7.2 0.36 2.8 2.5
MINIMUM (rad) 0.0 0.0 0.0 0.0
MAXIMUM (rad) 461 45 84 461

VARIANCE 704 14 88 443

Thyroid Study



Box Elder
0.27 rad
n=79

Tooele
036rad
n=64

Uintah
020 rad
n=29

Juab

n=31

JM 1

Millard
035rad
n=47

028 rad Carbon
020rad, n=42

024 rad Emery
n=71 026 rad oand

Beaver
028 rad
n=21

n=29 n=6
Sevier
J 021 rad
n=73
1

Piute Wayne
025 rad 0.16 rad
n=7 n=12

[ron
031rad
n=54

_—l—l_n—

Carfield

0.45 rad
n=19 San Juan
0.20rad

Washington
1.9 rad
n=37

n=6
Kane
091 rad
n=6

Map of Utah showing the
average of mean bone
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residential history. “‘n”
includes only subjects who
were born before 1952 and
who died after 1958, thus
accumulating the  total
potential exposure from

Nevada Test Site fallout.

Leukemia Study



Map of Washington County, Utah, and total
outdoor exposure (Roentgens) at selected

locations. U
['? [ s’
¢ Enterprise
1.0
Washington County
® °®
Central Pine Valley
3.0 4.0
® Pintura
Gunlock Ve.yo 3.0
53 ° 4.0 e Toquerville 710
La Verkin .0 nLodge
. @ 4.7 ¢ Virgin .
Shivwits .Hurricane 22 o
. .
7 * ® St George 6.1 o Springdale
Santa Clara 5.7 Rockville 4.0

4.8 3.9

e Bloomington
4.0

Leukemia Study



Release information from DOE/NV 317

RELEASE CATEGORIES FOR TESTS CONDUCTED AT
THE NTS AND OTHER CONTINENTAL LOCATIONS
AFTER THE LIMITED TEST BAN TREATY (LTBT)

Total Tests Conducted Post-LTBT = 723

l [ Containment Failures [l *Other [ Contained [J] Operational I

Containment Failures 10s

*Other =9
Operational = 287

Contained = 322

*Indicates late-time seepage and Plowshare/cratering

Figure 1. Release categories.




Information from DOE/NV 317

TEST RELEASE - OFFSITE VERSUS ONSITE

1961 -1992

[] oFFsITE [l ONSITE

OFFSITE = 52

ONSITE = 381

Total Tests That
Released Effluent = 433

Figure 2. Offsite versus onsite releases.




Test: BANEBERRY

Date: 12/18/70 Sponsor: [LRL

Time: 0730 PSTT Depth of Burial: 912 i

Location: NTS USd Purpose: Weapons Related
Type: Shati Yield: 10 Kkt

Release Type of

Detected: Of1site Release: 1est

- . . - G
I'est Release at R=12 Hours. in Curies: 6.7 x 10"

Isotopes Identified in the Release: Gross fission products

Cloud Direction: Northeasterly. parts of the cloud moved over Nevada. Utah. and Wyoming:
another fraction moved towards California
. . . . . e - - . . 131 .
Maximum Activity Detected in Air Offsite: 230 picocuries of '~ 'l per cubic meter and
- : 133 : . : )
3.400 picocuries of "I per cubic meter of air at Stone Cabin Ranch. Nevada

Maximum Gamma Exposure Rate Detected Offsite: [.ess than 1 mR/h in populated arcas:
0.6 mR/h at Stone Cabin Ranch. Nevada

~

. . . . . . 131 . .
Maximum lodine Level Detected Offsite: 810 picocuries ol I per liter in milk at the
McCurdy Ranch near Beattv. Nevada

Maximum Distance Radiation Detected Offsite: 0.05 mR/h at Austin. Nevada

telease Summary: Venting occurred from a fissure near surface ground zero at H+3.3 minutes.
The effluent venting rate steadily decreased with time. but visible vapor continued to emanate
rom the fissure for 24 hours after the detonation.




A-BOMB SURVIVOR STUDIES

The two bombs killed about 300,000 people

OKm <.01 mSv

“Close in controls”
5% less cancer than

“Distant controls” Preston et al 2004

Pierce and Preston et al 2000
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A-BOMB SURVIVOR STUDIES

3 Km

CONTROL AREA

Excess
Solid Tumors

Excess
Leukemias

113

28.2
116

27.7

99

18.9
41

10.4
44

572 Total
Excess _
Cancers . "®® 93 Total

2

479 Total




Atomic Bomb Survivor
Excess Cancer

Population of Survivors Studied 86,611

Total Solid Cancers observed after the Bomb 10, 127 Total

Solid Cancers Expected without Bomb 9, 647
Total Solid Cancer Excess 479
Excess Tumor Excess Leukemia

+ _ 572
479 93

Preston et al. 2004



Age Groups of A-Bomb Survivors
I

30-39

20-29

10-19

0 5000 10?08. . 15000 20000
ple Living

Number of Peo
Preston et al. 2004
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Casualties at Hiroshima and Nagasaki
(Cancer Studies in Survivors)
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Casualties at Hiroshima and Nagasaki
(Initial casualties vs survivor cancers)
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Per capita thyroid doses resulting from all exposure routes from all tests
(Ref. NIH lodine Study)
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Health Physics Society Position on Risk of Cancer resulting

N

from Exposure to lonizing Radiation - Apr.,1999

Health effects have primarily only been observed in populations exposed to
high doses at high dose rates.

The Life Span Studies of the Japanese survivors, exposed at high doses and
high dose rates, form the most significant basis for estimates of risk from
radiation.

The risk (i.e.. chance) that any given cancer is related to a given radiation
exposure depends on the amount of that exposure (i.e.. dose) as well as other
factors such as type of cancer, age at exposure, gender, and time since
exposure.

The lowest doses at which an increase in any type of cancer is attributed to
radiation exposure in the Japanese studies is greater than the 5 rem (0.05 Sv)
used by the VA as a screening level for compensation evaluations.

The risks on a “per dose basis™ of exposure to low dose. low dose-rates are less
than those due to high dose. high dose-rates.

From these scientific facts the Society makes the opinion that there is no

justification for assuming a presumptive causation of a cancer without

consideration of all factors listed in #3 above. including dose.



Statement on Cancer and Radiation Dose by the Council of Scientific
Society Presidents — Wingspread Conference 1997, Racine, WI

“A substantial body of scientific evidence
demonstrates statistically significant
increases in cancer incidence for acute
whole-body exposures of adults to ionizing
radiation at doses of about 10 rem and
greater.”



Attributable Percents from Various
Risk Factors

Attributable Percents

Risk Factor Percentage (%)

Tobacco

Adult diet 7 obesity

Sedentary lifestyle

Occupational factors

Family history of cancer

Viruses and other biologic agents
Perinatal factors / growth
Reproductive factors

Alcohol

Socioecconomic status
Environmental pollution
Ionizing / ultraviolet radiation
Prescription drugs / medical procedures

—-‘NNUUU'JO'JO'A'Ji'Jigg

Salt /f other food additives /f contaminants

Harvard Report on Cancer Prevention., Carcer Causes Control 7 (sappl 1), 1996 ]




Potential Terrorist Scenarios

m Radiological

= Radiological dispersion device;
e.g., ‘dirty bomb”

= Malicious use of radioactive
substances

= Nuclear
= Attack on nuclear facility
= Nuclear weapon
= Improvised nuclear device (IND)

CDC
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Tamper Assembly

Gun Barrel Assembly

Gun Propellant

Steel, about: Electronics Ba Steel, about: Gun Breech Assembly
60 cm diameter x 70 cm y 10 cm bore x 200 cm Steel
long, 2000 kg long
33184
Tamper/Reflector i
Assembly Uranium Target Rings | | Boron Safety Plug and Uranium Target (inside
; steel can)
Tungsten Carbide About 38 kg Sabot About 26 k
About 300 kg 9

Mark-1 “Little Boy” Model 1850
Uranium Gun-type Nuclear Bomb Design

Internal Cross Section (hypothetical)




What ls an RDD?

* A radiological dispersal device (RDD) is an
unconventional weapon that a terrorist might use
to destabilize a community, as described at right.
Although often used to represent a dirty bomb,
the radioactivity in an RDD could also be
distributed passively (nonexplosively), such as
through spraying or spreading by hand.
Alternately, a radiological exposure device
(RED) might be used, which would simply
involve placing a radioactive source in a public
area to expose people passing by.



Radiological Dispersal Device:

Any method used to deliberately disperse
radioactive material to create terror or
harm. A dirty bomb is an example of an
RDD. It is made by packaging explosives
(like dynamite) with radioactive material
to be dispersed when the bomb goes off.



RDDs-Where Would the Radioactive
Material Come From?

« Radionuclides are used in a variety of industry,
medicine, and scientific research applications, as
illustrated by the examples below. Many of these are in
sealed sources, used in civil engineering (in flow gauges
and to test soil moisture and material thickness/integrity
for construction), in petroleum engineering (in well
logging for oil exploration), in the airline industry (in fuel
gauges and to check welds and structural integrity), in
medicine (cancer treatment, pacemakers, and
diagnostics), in homes (smoke detectors), and to make
electricity (in radiothermal generators or RTGs, that
generate power in remote areas ranging from
lighthouses to outer space).



Examples of Radionuclides in Common Use

Medicine [ndustry/Commerce Science
Dingnosis |~ Treatment | Energ), Df’fﬂ!it’; Testing, Production Food, Agriculture Home Researcl
Trcer flow Genma Ikﬂlf-f.‘, Commerchl ENDIIEIESMIETH’E et of ' Suke | Higbeagy

| bloodtissue s« | structural mtegrity, | Food product oo
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Which Radionuclides Are of Most Concern?
Nine isotopes of
interest for RDDs are:

e Ameniciun-241 (Am-2414)
o Californium-252 (CF-252)
e Cesium-137 (Cs-137)

e Cobalt-60 (Co-60)

e Inidium-192 (f1-192)

e Plutonimuum-238 (Pu-238)

e Polonium-210 (Po-210)

e Radium-226 (Ra-226)

e Strontimum-20 (S-90)



Basic Radiological Properties of Nine Key Radionuclides for RDDs

‘ Radiation Energy (MeV)
Isotape f{,fiff iﬁ:f Decay Mode  Alpha Beta 2 anmmn
" (Cig @ ® (y

Americum-241 430 35 o 5.5 0.052 0.033
Calhifornium-252 2.6 540 o (SF, EC) 5.9 0.0056 0.0012
Cestum-137 30 88 B, IT : 0.19, 0.065 0.60
Cobalt-60 5.3 1.100 B : 0.097 2.5
Iridium-192 0.2 (74 d) 9,200 B, EC - 0.22 0.82
Plutonum-238 88 17 a 5.5 0.011 0.0018
Polonmum-210 0.4(140d) 4,500 o 5.3
Radim-226 1.600 1.0 o 4.8 0.0036 0.0067
Strontium-90 29 140 B - 0.20, 0.94

SF = spontaneous fission; IT = isomeric transition; EC = electron capture. A hyphen means not
applicable. The radiation energies for cesium-137 include the contributions of barium-137 metastable
(Ba-137m), and those for strontium-90 include the contributions of yttrium-90.




Radioactive Sources

m 157,000 licensed users in U.S.

= 2,000,000 devices containing
radioactive sources

s Approximately 400 sources lost
or stolen in U.S. every year



Sources Around the World
j § "1

Recovered Sources used in mobile cesium
transport container irradiators in the former Soviet Union

Photos courtesy of the International CDC
Atomic Energy Agency (IAEA) |




Goiania, Brazil

e
Radielegical
‘Accident
inlGoiania



Goiania Radiological Release

Photos courtesy of the International
Atomic Energy Agency (IAEA)




Goiania Morbidity

= 249 exposed; 54
hospitalized

= Eight with
radiation sicknes

= Four people died

= 112,000 people

monitored (>10% of
total population)

e

e

Photos courtesy of the International
Atomic Energy Agency (IAEA)




lllustrative Case Study: 1987 Radiological
Accident in Goiania, Brazil

In September 1987, a hospital in Goiania, Brazil, moved to a new location and left its radiation cancer
therapy unit behind. Found by scrap metal hunters, it was dismantled and the cesium chloride source
containing was removed. Pieces were distributed to family and friends, and
several who were intrigued by the glow spread it across their skin. Eleven days later, alert hospital staff
recognized symptoms of acute radiation syndrome in a number of victims.

The ensuing panic caused more than 112,000 people — 10% of the population — to request radiation
surveys to determine whether they had been exposed. At a makeshift facility in the city’s Olympic
Stadium, 250 people were found to be contaminated. 28 had sustained radiation-induced skin injuries
(burns), while 50 had ingested cesium, so for them the internal deposition translated to an increased risk
of cancer over their lifetime. Tragically, 2 men, 1 woman, and 1 child died from acute radiation
exposure to the very high levels of gamma radiation from the breached source.

In addition to the human toll, contamination had been tracked over roughly 40 city blocks. Of the

85 homes found to be significantly contaminated, 41 were evacuated and 7 were demolished It was
also discovered that through routine travels, within that short time people had cross-contaminated
houses nearly 100 miles away. Cleanup generated 3,500 m3 radioactive waste at a cost of $20 million.
The impacts of this incident continued beyond the health and physical damage to profound
psychological effects including fear and depression for a large fraction of the city’s inhabitants.

Further, frightened by the specter of radioactive contamination, neighboring provinces isolated Goiania
and boycotted its products. The price of their manufactured goods dropped 40% and stayed low for
more than a month. Tourism, a primary industry, collapsed and recent population gains were reversed
by business regression. Total economic losses were estimated at hundreds of millions of dollars. A key
lesson learned from this incident is the importance of enhancing the broader understanding of radiation.
This fact sheet is intended to help support that objective.

(For additional information see: International Atomic Energy Agency (IAEA), 1988, The Radiological
Accident in Goiania, Vienna, Austria.)



Decrease time spent near
the radioactive source

Increase distance between
you and the source

Increase the physical
shielding between
you and the source




Common Shelters

Structure

Dose Reduction
Factors

Wood Frame (15t floor)

10%

Wood Frame (Basement)

40%

Masonry

40%

Large building

80%
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Table 1. Summary of what we know and don? know about current and emerging dosimetry technologies.
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Emerging Technologies

Physical changes In
human tissues
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What should be Done?

Table 2 lays out deliverables & a time table for a National
Program in Emergency Radiation Dose Assessment!

Clarify device needs and requirements
Maximize use of existing technologies

Pursue longer range research &
development to fill gaps with existing
technologies

Conduct a demonstration program to
assess the value of existing and proposed
technologies



Table 2 Suggested Goals for National Program in Radiation Assassment.
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