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e Arctic climate is changing rapidly

« As documented In ice cores, humans have
had a significant impact on Arctic climate and
the Arctic environment for at least 150 years
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nat Is the role of the Arctic in global climate
how Is Arctic climate changing today?

nat Is the glaciochemical archive and why is

It so valuable for understanding climate and
environmental change?

« How do we sample the archive with ice cores?

 DRI's unigue ice core analytical system

 Recently published results from Greenland



Where is the Arctic?

Permafrost

Permanent and
seasonal sea ice

Glaciers and
ice sheets



What drives global climate?
The “Greenhouse Effect”

Solar radiation powers
the climate system.

Some solar radiation
is reflected by
the Earth and the
atmosphere.

f ATMOSPHE, -

gE About half the solar radiation

is absorbed by the

Earth’s surface and warms it. Infrared radiation is
emitted from the Earth’s

surface.

Source: IPCC, 2007



The Polar Regions play a key role

In global energy balance
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How Is the Arctic changing today?

Alr temperatures are rising!

{e) Northern Hemisphere

Difference (°C) from 1961-1990
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How Is the Arctic changing today?

Sea ice extent expands and shrinks each
year but overall trend is strongly downward!

Arctic Sea lce Extent Standardized Anomalies
Jan 1953 - Oct 2008

— Morthiy Aromaty
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Year

Source: http://nsidc.org/



How Is the Arctic changing today?

Permanent sea ice is melting!

Sea ice conditions for the month of
September, 2002 through 2008

Source: http://nsidc.org/

Loss of permanent
sea ice predicted by
2030 (or earlier!)
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How Is the Arctic changing today?

Edges of Greenland ice sheet are
melting and flowinqg faster toward

the seal

1993 to 1999 changes in
Greenland ice sheet

thickness from repeated
altimetry measurements

Warm colors = up
Cold colors = down




How have drivers of climate changed during
recent centuries?

Solar radiation powers
the climate system.

Some solar radiation
is reflected by
the Earth and the
atmosphere.

f ATMOSPHE, -

gE About half the solar radiation

is absorbed by the

Earth’s surface and warms it. Infrared radiation is
emitted from the Earth’s

surface.

Source: IPCC, 2007



Attribution of radiative forcing of climate
(1750 — 2005)

Radiative forcing of climate between 1750 and 2005
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Attribution of radiative forcing of climate

(1750 — 2005)

Radiative Forcing Terms

Radiative forcing of climate between 1750 and 2005

Spatial scale
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Ice cores can help!
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Forming the glaciochemical
archive of the environment
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Sampling the Archive
Deep (Millennial-Scale) Ice Coring

IR 7 R

Deep Coring at Siple Dome,
West Antarctica

Photos: K. Taylor



Sampling the Archive

Intermediate (Century-Scale) Ice
Coring

Photos: L. Long



Sampling the Archive
Shallow (Decade-Scale) Ice Coring

“*Commuter” Coring
Home in time for dinner!!




Why are ice cores records
so valuable?

 Most direct paleo??? records

e Actual (not proxy) atmospheric &
precipitation chemical properties

« Span decades to centuries to millennia

 High temporal resolution (monthly to annual)

o Spatial resolution (arrays)

e Point to regional scale information (long
range transport implicit)



Components of the Arc

nive

Sintering of snow into ice

density depth
[kg/ m’ ] § A [m]
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e Net snhowfall

e Gases
trapped in the
pore spaces

e Water
Isotopes

e Soluble &
Insoluble
iImpurities In
the ice lattice



Why care about net snowfall?

Ice Sheets T Sea Level l or Ice sheets l Sea Level T

Mass balance = inputs — outputs

Inputs: snowfall (ice cores, precipitation models)

Outputs: sublimation, ice berg calving, melt

Greenland + Antarctica = 81 m (~260 ft) sea level

Question: Will ice sheets grow
or shrink under global warming?



Change in
elevation from
1993 to 1998
measured by
repeat airborne
laser altimetry

Warm colors = up

Cold colors = down Krabill et all., Science, 1999.




lce Cores &

lce Sheet Mass Balang: "

Net (P-E) snowfall is half of |ce sé
sheet mass balance equation

Short-term snowfall rate

variability masks long term

change
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Margins are
melting rapidly.

Center is in
balance or rising
slightly.

Best Estimate:
+0.20 mm/yr SL




What about
Antarctica???

Remember that it is huge!



1992 — 2003 Elevation Change

from Satellites
Observed Precipitation-Driven

. -9
20 : 20

~20 : : : .50

Davis et al., Science, 2005.



1992 — 2003 Elevation Change
from Satellites

West Antarctica
shrinking rapidly.

East Antarcticais
rising slowly
(Warmer air means
more precipitation).

Best Estimate:
-0.02 mm/yr SL

Davis et al., Science, 2005.



Components of the Arc

nive

Sintering of snow into ice

density depth
[kg/m’] K A [m]
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trapped in the
pore spaces

o« \Water
Isotopes

e Soluble &
Insoluble
iImpurities in
the ice lattice
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2009

X
The last 1000 years of atmospheric carbon

dioxide from ice cores
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Components of the Arc

nive

Sintering of snow into ice

density depth
[kg/m’] K A [m]
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e Water
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The challenge Is to analyze
the ice core record
=to-maximize

geophysical Tiformation







DRI's unique
analytical system for
high-resolution,
continuous ice core
measurements

SRl

Desert Research Institute




CFA-TED/BC Schematic

Instrumented Melter Stand
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Where does Arctic pollution come from?

Emissions in
the warm
mid-latitudes
are
transported
In the
atmosphere
and
deposited In
the cold high
latitudes.




When did Arctic pollution begin?

250 1973

Northern Greenland ice core

00 L Annual average
S-year average

Enrichment ~180

150

100

Lead Enrichment,,

Enrichment ~3

1200 1400 I 1600

McConnell et al., Year
in preparation ~1500 1874



What is the role of pollution in Arctic climate

change?

Few long term
records

Ice cores can help!

Consider Black
Carbon (a.k.a. soot)

Anthropogenic

Natural

Radiative Forcing Terms

Radiative forcing of climate between 1750 and 2005

Climate efficacy

Spatial scale

T T T
r ! -
! 1.0 s8¢ | global | High
. | caption)
Longdived |
greenhouse gases | |
| ~10= .
1.0=-1.2 - ilak: i
\ | 100 yrs Glabal High
|
| Halocarbons
. ) . Waeeks to | Continental | |
Ozone Stratosphetic Tropospheric [0.5-2.0| " /" e Med
R . 00 yrs to global
| (=0.05) |
Stratospheric water ! | . . . B
from CH | T o 10 years Global Low
vapour 4 |
| |
Surface alb Land use Black carbon J— 10 - Lac}a
. on sNow 100 yrs continental
| |
r : : 07 - 1.1 Days Continental
| | h ) B to global
Total ! | |
Aerosol | clwd albedo 1 | 1.0-2.0 Haurs - | Continental
. act | 1 e Days to global
| |
. h | 1
Linear contrails | | ~ 0.6 Hours | Congy
|
I /
Solar irradiance ! 0.7=-1.0 —10 " Glabal ow
| 1 100 yrs
" | ) ) l L
-2 =1 0 1 2 Timescale Scientific
) - - understandin
Radiative Forcing (W m™2) erstanding

Source: IPCC, 2007



Case Study:
BC in Greenland 1788-2002
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Black Carbon, ng g

High Resolution Measurements
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Vanillic Acid as a tracer of
biomass burning emissions

o s Y Non -sea salt sulfur as a tracer
of iIndustrial emissions



Biomass burning

Not from dominated 1788~1860
biomalss burning! 'and after ~1951.
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Annual: 0.67 (p < 0.0001) Coal burning dominated
Winter: 0.74 (p< 0.0001) ~1850 to 1951

Summer: 0.59 (p<0.0001)
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Photo courtesy of A. Stohl



Early Summer Radiative Forcing from
Black Carbon in Snow from Model*

- Permanent Snow Cover c Seasonal Snow Cover
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What about at other Arctic sites
nfluenced by dlfferent sources?

D4 ice core
High Elevation
(>3000 m)
Cold (no melt)
High snowfall
(440 kg m2y-1)

ACT2 ice core

High Elevation
(~2400 m)
Surface melting
High snowfall
(368 kg m2y-1)




BC at D4 (Greenland) & ACT2 (Greenland)
30 . : - ;
» Coal-burning Annual (light)
industrial increases | 5-y average (heavy) |
25 L much greater (3X) —
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McConnell & Edwards, PNAS, 2008.



BC source tracers (toxic heavy metals)

Thallium Cadmium
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McConnell & Edwards, PNAS, 2008.



CO n C I u S I O n S ‘"_ A Record of Industrial Era Soot in Arctic Ice -
- -:. | | | e "‘} 1 ’iﬁf‘{‘ GreeTnd

® Canada
U.S.A.

7 x more soot in Greenland snow from
industry than from forest fires (1880-1950)

Snow’s reflectivity compromised by soot

Arctic pollution & radiative forcing for centuries.

 Can we slow Arctic warming? Role of short-
lived pollutants.

 High-resolution ice cores records (especially
spatial arrays) can help elucidate changes,
sources, & transport pathways




What happened here?
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